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Abstract—Today there exists no shortage of outlier detection
algorithms in the literature, yet the complementary and critical
problem of unsupervised outlier model selection (UOMS) is vastly
understudied. In this work, we propose ELECT, a new approach
to select an effective candidate model, i.e. an outlier detection
algorithm and its hyperparameter(s), to employ on a new dataset
without any labels. At its core, ELECT is based on meta-
learning; transferring prior knowledge (e.g. model performance)
on historical datasets that are similar to the new one to facilitate
UOMS. Uniquely, it employs a dataset similarity measure that is
performance-based, which is more direct and goal-driven than
other measures used in the past. ELECT adaptively searches
for similar historical datasets, as such, it can serve an output
on-demand, being able to accommodate varying time budgets.
Extensive experiments show that ELECT significantly outper-
forms a wide range of basic UOMS baselines, including no model
selection (always using the same popular model such as iForest)
as well as more recent selection strategies based on meta-features.

I. INTRODUCTION

Outlier detection (OD) aims to identify data points deviating
from the main data generating distribution, with numerous ap-
plications such as intrusion detection, anti-money laundering,
rare disease detection, to name a few. Over the years, a large
body of new detection algorithms are proposed in the literature
[1], including the most recent surge of deep learning [2].

While there is no shortage of OD algorithms today, a key
question remains untackled: which algorithm and values of
hyperparameter(s) (HP) (together referred to as OD model or
outlier model) to use on a given new dataset (or detection
task)? Broadly known as the model selection problem, this
question is at the heart of (machine) learning with direct
implications on performance and generalization [3], and OD
is no exception [4], [5]. As the “no free lunch” theorem [6]
implies, there exists no “winner” outlier model that excels
across all tasks [7], especially provided that OD is employed in
a wide variety of domains. In fact, the best OD model can vary
even on tasks within the same domain; for example, distinct
OD algorithms are reported to outperform in three separate
articles on network intrusion detection [8]–[10]. Moreover, the
sensitivity of OD algorithms to their HP settings is recognized
in several evaluation studies [4], [11], [12]. For instance,
the literature reports that by varying the number of nearest
neighbors in local outlier factor (LOF) [13] while keeping the
other conditions the same, up to 10× performance difference
is observed in some datasets [14]. All of these works show
the fact that OD model selection is critical and inevitable.

Moving beyond designing yet-another detection algorithm,
it is exactly our goal in this work to systematically address

the unsupervised outlier model selection (UOMS) problem,
which involves selecting an OD algorithm as well as its hy-
perparameter(s) for a given new OD dataset. While essential,
the problem is notoriously hard for: (i) model evaluation (say,
on hold-out data) is infeasible due to the lack of labels, and
(ii) model comparison is inapplicable as there is no universal
loss/objective criterion applicable to all OD algorithms. No-
tably, even if they were available, using labels in OD model
selection could be challenged as the available labels may be
too limited to be comprehensive/high-coverage, and in turn the
selected model based on known labels may not be suited to
unknown/emerging types of outliers in deployed systems.

Prior Work. In supervised learning, model selection can
be done via performance evaluation of each trained model on a
labeled hold-out set, either by simply searching among models
defined over a static grid or via more sophisticated dynamic
search techniques such as bandit-based strategies [15] and
Bayesian hyperparameter optimization [16], [17] – the latter of
which are effectively used in the AutoML literature [18]. We
remark that these techniques cannot (at least directly) be used
in UOMS as they require model evaluation using ground-truth
labels. There exist some recent work on automating OD by Li
et al. [19], [20], which however also relies on labels, inheriting
the aforementioned limitations. Most recently, a meta-learning
based unsupervised approach is proposed by Zhao et al. [14]
where similarity among the input task and historical OD tasks
is leveraged, which is measured based on meta-features, i.e.,
summary statistics of a dataset. Our present work is inspired by
Zhao et al.’s work, yet takes a distinct approach for quantifying
task similarity. See discussion of related work in §VI.

Present Work. The primary motivation behind this work
is to use performance-driven similarity for quantifying the
resemblance among the input task and historical OD tasks
in meta-learning. Building upon this, we propose ELECT,
an iterative meta-learning approach for unsupervised outlier
model selection. In principle, meta-learning carries over prior
“experience” from a database of historical tasks to facilitate the
learning on a new task, provided that the new task resembles at
least some of the historical ones. As we aim to carry over the
information of prior performance of OD models on historical
tasks to effectively select a high-performance model for an
input task, we argue that the most suitable measure of task
similarity is the similarity of model performances on two tasks.
Of course, model performances are unknown and cannot be
directly evaluated on the new, unsupervised task. This is where
we employ meta-learning by training a supervised predictor on



the historical tasks that maps internal information of trained
models (without using any labels) to their actual performance.
We carefully and adaptively search for similar historical tasks
and select a model that achieves high performance on those,
without training too many models on the input task, such that
UOMS incurs negligible computational overhead. We find it
important to remark that UOMS precedes OD (say, by the
selected model), and that ELECT is strictly a model selection
technique other than a new OD algorithm. Our contributions:
• New UOMS Method. We introduce ELECT, a novel

approach to unsupervised OD model selection based on
meta-learning. It capitalizes on historical OD tasks with
labels to select an effective, high-performance model for
a new task without any labels.

• Performance-driven Task Similarity. The key mechanism
behind meta-learning is to effectively identify and transfer
knowledge from similar historical tasks to the new task.
Unlike prior work [14] that relies on handcrafted meta-
features to quantify task similarity, ELECT takes a direct
and goal-driven approach, and deems two tasks similar if
OD models perform similarly on both tasks.

• Unsupervised Adaptive Model Search. As ground-truth
labels are unavailable for a new task, ELECT learns (during
meta-training) to quantify performance based on internal
model performance measures. Moreover, it carefully decides
which model to train on the new task iteratively, keeping as
small as possible the total number of models trained before
selection, thereby reducing computation time. Moreover, it
is an anytime algorithm that can output users a selected
model at any time they choose to stop it.

• Effectiveness. Through extensive experiments on two
testbeds, we show that selecting a model by ELECT is
significantly better than employing popular models like
iForest as well as all meta-feature baselines, including the
SOTA MetaOD (p = 0.0016), in the controlled testbed.

Reproducibility. To foster future work on UOMS, we fully
open-source ELECT at https://github.com/yzhao062/ELECT.

II. PROBLEM STATEMENT & OVERVIEW

A. Problem Statement

We consider the model selection problem for unsupervised
outlier detection (OD), which we refer to as UOMS (un-
supervised outlier model selection) hereafter. Given a new
dataset, without any labels, the problem is to select a model
– jointly specified by both (i) a detector/OD algorithm and
(ii) the values for its associated hyperparameter(s) (HP). The
former is a discrete choice, given the finite set of existing
detection algorithms. The latter is continuous, and hence
induces infinitely many candidate models.

Continuous-space HP optimization is often addressed with
iterative search strategies, such as particle swarm optimiza-
tion and Bayesian optimization (BO) (see [21], [22]), which
adaptively and efficiently navigate the HP configuration space.
For example, BO decides which configuration to evaluate
next based on previously evaluated configurations from prior

rounds. An explore-exploit criterion guides this decision, trad-
ing off between (exploit) searching nearby high-performance
configurations for local improvement and (explore) wandering
off to unexplored/uncertain regions of the space to improve the
estimation of the global performance landscape. These types
of approaches are challenging to undertake for the UOMS
problem, where model evaluation cannot be performed reliably
due to the lack of ground-truth labels.

Therefore, in this work, we simplify and make the search
space more tractable by pre-specifying the set of OD mod-
els to choose from. Specifically we define a finite pool of
models, denoted M = {M1, . . . ,Mm}, by discretizing the
HP space for each candidate detector. Each model M ∈ M
here is a {detector, configuration} pair, where the
configuration depicts a specific setting of the HP values
for the detector; e.g. {LOF, k=10}. Then, the UOMS
problem is stated as follows:

Problem 1 (Unsupervised Outlier Model Section (UOMS)):
Given a new unsupervised OD task, i.e. an input dataset
Dtest = (Xtest, ∅) without any labels, and a finite candidate
model set M; Select an effective model M ∈ M to employ.

B. Proposed ELECT: Overview

At the heart of our proposed approach to UOMS lies
meta-learning, where the underlying principle is to transfer
useful information from historical tasks to a new task. To this
end, ELECT takes as input a set of historical OD datasets
Dtrain = {D1, . . . ,Dn}, namely, a meta-train database with
ground-truth labels where {Di = (Xi,yi)}ni=1 to compute:
• the historical output scores of each candidate model Mj ∈
M on each meta-train dataset Di ∈ Dtrain, where Oi,j :=
Mj(Di) refers to the j-th model’s output outlier scores for
the points in the i-th meta-train dataset Di; and

• the historical performances matrix P ∈ Rn×m of M on
Dtrain, where Pi,j depicts model Mj’s performance1 on
meta-train dataset Di.
ELECT consists of two phases. In a nutshell, during the

(meta-)training phase (offline), it learns information neces-
sary to quantify similarity between two tasks based on Dtrain.
It uses this information during the (outlier) model selection
phase (online) to identify similar meta-train tasks to a new
input task Dtest and chooses a model without using any labels.

Next, we present a high-level description of these phases.
Fig. 1 illustrates the key steps in each phase.

1) (Offline) Meta-training Overview: Given historical
tasks Dtrain and the new task Dtest for model selection, the
main idea is to first identify a subset of tasks N ⊂ Dtrain that
are similar to Dtest, and then choose the model that performs
the best on average on those “neighbor” tasks. Thus, a key
ingredient of ELECT is an effective task similarity measure.
Distinctly, it utilizes performance-driven task similarity: two
tasks are similar if the performance rank-ordering of all the
models on each task is similar.

1Area under the precision-recall curve (AUCPR, a.k.a. Average Precision
or AP); can be substituted with any other accuracy measure of interest.

https://github.com/yzhao062/ELECT
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Fig. 1. Main steps during the Offline and Online phases of ELECT.

Of course, the similarity of Dtest to meta-train datasets
cannot be computed based on the ground-truth model perfor-
mances on Dtest given that labels are unavailable for the input
task (obviously, that would void the model selection problem
altogether). A core idea of ELECT is to learn to estimate true
performance from internal performance measures (IPMs)
during meta-training. IPMs are unsupervised signals that are
solely based on the input points and/or a given model’s
output (e.g. outlier scores) that can be used to compare two
models [23], [24]. However, they are noisy/weak indicators of
performance [25]. ELECT makes the best use of these weak
signals by learning to regress the IPMs of two models onto
their true performance difference.

2) (Online) Model Selection Overview: In the (online)
model selection phase, given Dtest, we can build/run each can-
didate model on Xtest, extract the corresponding IPMs, and use
the regressor (from meta-training) to estimate pairwise model
performance differences for quantifying Dtest’s similarity to
each meta-train dataset based on the all-pairs rank similarity
of the models. However, building and internally evaluating all
of the candidate models would be computationally expensive.

To avoid training all the models at test time, a core idea
behind ELECT is to quantify similarity between Dtest and
meta-train tasks based on only a small subset of the models,
which is carefully and adaptively picked and expanded. At
each iteration, this strategy picks the next model to train on
Dtest with the best explore-exploit trade-off, where exploration
(picking a model with high uncertainty in performance esti-
mate) helps refine similarity and thereby update the set of
neighbor tasks, and exploitation (picking a model with high-
performance estimate) ensures that the neighbor tasks share
similarity w.r.t. the well-performing models. Ultimately, the
goal is to effectively identify similar historical tasks based on
as few models run on Dtest as possible. Upon convergence, the
model with the largest average performance on the neighbor

tasks (from the latest iteration) is reported as the selected
model for Dtest.

We present the technical details of ELECT’s (offline) meta-
training and (online) model selection phases in §III and §IV.
Additional implementation details are given in Appx. A & B.

III. ELECT: META-TRAINING (OFFLINE)
The main component of meta-training is to learn, using

historical (meta-train) tasks, how to quantify performance-
based task similarity from imperfect indicators of performance,
namely internal performance measures (IPMs). In the follow-
ing, we introduce our task similarity measure (§III-A), specific
IPMs used by ELECT (§III-B), and how to do the mapping
between the two (§III-C).

A. Performance-driven Task Similarity

Meta-learning carries the prior experience on historical tasks
over to a new task, provided that the latter resembles some of
the historical tasks. Thus, quantifying task similarity is crucial
to the effectiveness of a meta-learning based approach [26].

Our work is most similar to the recent work by Zhao et
al. [14] that developed the first unsupervised approach to
outlier model selection. Their proposed METAOD quantifies
task similarity based on meta-features, which reflect general
statistical properties of a dataset where the majority of the
points are inliers. As such, two datasets with similar inlier
distribution but different types of outliers may look similar
w.r.t. meta-features, while different outlier models may be
more effective in detecting different outlier types that they
exhibit. In such scenarios, meta-feature similarity would be a
poor indicator of model performance similarity.

In contrast to METAOD, we propose a performance-driven
similarity measure, where two tasks are deemed more similar,
the more the same set of models perform well/poorly on both
tasks. Arguably, ours is a direct means to the end goal—
only when task similarity is defined in this performance-based
fashion would it be natural (and even gold standard) to choose
a model for a new task that performs well on its neighbor tasks.

Our performance-driven similarity is a rank-based measure,
called the weighted Kendall’s tau rank correlation coefficient
[27] (τ for short), which quantifies the similarity between the
ordering of the candidate models by performance. Formally,
let Pi ∈ Rm depict the i-th row of P containing the detection
performances of models M = {M1, . . . ,Mm} on dataset Di,
and let ∆(i)

j,j′ = Pi,j −Pi,j′ denote the difference between the
performances of Mj and Mj′ on Di. Then, τ between two
tasks Di and Di′ is defined as follows.

τ (i,i
′) = τ(Pi,Pi′) =

∑m−1
j=1

∑m
j′=j+1 w

(i,i′)
j,j′∑m−1

j=1

∑m
j′=j+1 |w

(i,i′)
j,j′ |

, where

w
(i,i′)
j,j′ =


1 if ∆(i)

j,j′ = ∆
(i′)
j,j′ = 0

∆
(i)
j,j′

/
∆

(i′)
j,j′ else if |∆(i)

j,j′ | ≤ |∆(i′)
j,j′ |

∆
(i′)
j,j′

/
∆

(i)
j,j′ else; i.e. |∆(i)

j,j′ | > |∆(i′)
j,j′ |

(1)

Intuitively, τ quantifies the concordance/discordance be-
tween pairwise model performances, where τ becomes smaller



both when the rank-orders are discordant (i.e., wj,j′ is nega-
tive) and when they are concordant but the ∆-differences are
disproportionate (i.e., wj,j′ is near-zero). Put differently, two
tasks are more similar when the models are ranked similarly,
and also the perf. of each model are similar in value on both.

B. Internal Performance Measures (IPMs)

To compute the similarity of a new task to historical
meta-train tasks, we would need pairwise model performance
differences on the new task. These model performances, of
course, cannot be computed due to the lack of ground-truth
labels. In fact, having these at hand would obviate the model
selection problem altogether. Then, how can we really compute
performance-driven task similarity?

The key idea is to learn a predictive model of ground-truth
performance (which is available for meta-train tasks) from
unsupervised indicators/features. The challenge is to identify
such features that correlate with model performance. Notably,
there exists a small literature on internal evaluation of outlier
detection models [23], [24], and recently also unsupervised
model selection strategies for deep representation learning
based on other internal measures [28], [29]. These are called
internal performance measures (IPMs) as they solely rely on
the input samples, the outlier scores and/or the consensus
between the candidate models. For example, consensus-based
IPMs in principle associate closeness to an overall consensus
of outlier scores/ranking with being a better model. We refer
to §VI for more details on specific IPMs.

An IPM is exactly designed to compare models without
any ground truth labels. Then, the question is why do not
we simply and directly use an IPM for model selection?
The reasons are two-fold. First, effectiveness-wise, IPMs are
weak/noisy signals of true performance. As a recent study
showed, they enable only slightly better model selection than
random [25]. Distinctly, ELECT plugs the IPMs into a meta-
learning framework, taking advantage of machine learning’s
ability to map weak signals onto desired ones. Related, it
would not be clear which IPM we should use for model
selection (a “chicken-egg” scenario), provided several op-
tions. Notably, ELECT leverages all/any available IPMs as
internal features in meta-training. Second, computation-wise,
we would need to train each and every candidate model on
Dtest to obtain its IPM and compare it to others, leading to
inhibitively high cost. In contrast, ELECT employs meta-
learning to identify similar historical tasks based on a small
subset of trained models on Dtest while still being able to select
among all of the candidate models via their (ground-truth)
performance on these neighbor tasks.

C. From IPMs to (True) Model Performance

At the core of ELECT’s meta-training is learning to
map IPMs onto ground-truth performance by the supervision
from the meta-train database. In particular, ELECT learns a
regressor that maps the IPMs from two models onto their
performance difference.

More formally, let ϕ(·) denote the process of extracting
various IPMs of model Mj when trained on Di, and mi,j

denote the corresponding vector of IPMs. ELECT uses three
IPMs; namely ModelCentrality (MC), HITS, and SELECT, as
described in [25]. The regression function, named pairwise
performance predictor, maps the IPMs of any pair of models
Mj and Mj′ onto their performance difference on a dataset, i.e.
f(mi,j ,mi,j′) 7→ ∆

(i)
j,j′ . In implementation we use LightGBM

[30], while it is flexible in choosing any other. We design f(·)
for pairwise prediction such that its output can be directly
plugged into Eq. (1) for computing task similarity. We find it
important to remark that provided with ϕ(·) and the trained
f(·) at test time, measuring performance-driven task similarity
via τ becomes possible without using any ground-truth labels.

For clarity of presentation, we defer a few implementation
details to Appx. §A, where we describe how to incrementally
compute the IPMs as additional models are trained on the new
input task at test time, as well as how to effectively train the
regressor and use its predictions at test time.

IV. ELECT: MODEL SELECTION (ONLINE)

After the meta-training phase, ELECT is ready to admit
a new task for model selection. Simply, it selects the highest
performance model on meta-train tasks (or meta-tasks) that are
very similar to the new task (§IV-A). It identifies these sim-
ilar meta-tasks iteratively by refining the similarity estimates
adaptively (§IV-B).

A. Model Selection via Similar Meta-tasks

Given a new task Dtest, we aim to identify its similar meta-
train tasks (referred as the neighbor set N ⊂ Dtrain). By the
principle of meta-learning, the model(s) that outperform on
the neighbor set is likely to outperform on the new task as
well. Consequently, we could output the model with the largest
average performance on the neighbor set as the selected model
for the new task, that is,

argmax
Mj∈M

1

|N |
∑

Di∈N
Pi,j . (2)

If the model performances Ptest were available for Dtest,
we could iterate over the meta-train database to measure task
similarity via Kendall’s tau in Eq. (1), and pick N to be the
top t most similar meta-train tasks, as shown in Eq. (3). Here
t denotes the size of the neighbor set (i.e. |N | = t), which
can be chosen by cross-validation on the meta-train database
(see Appx. §B1 for details).

N := top-t
i=1...n

τ (test,i) = top-t
i=1...n

τ(Ptest,Pi) (3)

However, we cannot directly identify N due to the lack
of ground-truth labels and thus evaluations Ptest on the new
task. Note the calculation of Kendall’s tau in Eq. (1) only
depends on pairwise performance gaps (i.e. ∆-differences) to
measure concordance/discordance, where the trained regressor
f(·) for pairwise performance gap prediction comes into play.
By plugging the predicted pairwise gaps (i.e. ∆̂-differences)



of the new task into Eq. (1), we could therefore estimate its
neighbor set N even when Ptest is inaccessible.

Specifically, for the new task Dtest, we first get its outlier
scores Otest = M(Dtest) and build the IPMs mtest = ϕ(Otest)
across candidate models.Note that We slightly abuse notation
here and use mtest to depict the IPM vectors for all models,
which is in fact a matrix. We could then predict the perfor-
mance gap of any pair of models for Dtest using the regressor
f(·) by

∆̂
(test)
j,j′ := f(mtest,j ,mtest,j′) ≈ ∆

(test)
j,j′ , (4)

where j = 1 . . .m and j < j′. The estimated Kendall-tau
similarity (τ̂ ) between the new task and meta-train tasks can be
calculated using the predicted pairwise performance gaps on
the new task ∆̂test in Eq. (4) and the actual performance gaps
on meta-train tasks ∆train, where e.g., we denote by τ̂ (test,i)

the estimated Kendall-tau similarity between Dtest and the i-th
meta-train dataset.

Then, by plugging the estimated task similarities into Eq.
(3), we obtain the neighbor set N of the new task as the top-
t meta-train datasets with the highest estimated Kendall-tau
similarity without relying on ground-truth labels, i.e.,

N := top-t
i=1...n

τ̂ (test,i) ≈ top-t
i=1...n

τ (test,i) . (5)

B. Unsupervised Adaptive Search
1) Motivation and Initialization: Quantifying the task

similarity by Kendall-tau using the full model set M =
{M1, . . . ,Mm} (based on all

(
m
2

)
pairs of performance gaps)

incurs high computational cost, as it involves model fitting to
get outlier scores and extracting corresponding IPMs for all
candidate models. We therefore propose to only measure task
similarity based on a subset of the models, denoted Ms ⊂ M
for model subset. Initially, Ms can be set to a small random
subset of M, while a more careful initialization strategy may
facilitate better similarity measurement. In ELECT, we design
a coverage-maximization strategy for initializing Ms, details
of which are described in Appx. §B2. The ablation in §V-D1
shows it is significantly better than random initialization.

2) Iteration: Adaptively Expanding Model Subset: The
initial Ms may not be sufficient to capture a complete picture
of task similarity. Therefore, ELECT expands the model
subset iteratively to refine the task similarity estimates and
thereby obtain increasingly better estimates of the most similar
datasets to Dtest.

Assume for now that an objective criterion exists for
choosing the next model to be included in Ms, then, the
adaptive search proceeds as follows. In each iteration, we
update the neighbor set N by the Kendall-tau similarities in
Eq. (1) computed based on the model subset Ms. Then, we
quantify the value of each candidate model that is not already
in Ms against the objective criterion and expand the model
subset with the model M∗ having the maximum value, i.e.
Ms := Ms ∪ M∗. In this way, we only need to fit on Dtest
(and get the corresponding IPMs) for the newly added model
M∗ per iteration. To reduce the overall computational cost, the

goal is to accurately identify highly similar neighbors N based
on as few models trained on Dtest as possible. It is important
to note, however, that even if we train only a small subset of
the models on the new task, upon identifying N , we select a
model from among all candidate models using Eq. (2).

What objective criterion is suitable for iteratively choosing
the next model to be included in the model subset Ms?
We argue that the added model should meet two criteria,
uncertainty and quality:

Criterion 1 (Uncertainty): The performance (rank) of the
added model should vary across the current neighbor set N .

Criterion 2 (Quality): The added model should outperform
on the current neighbor set N .

Notably, without uncertainty, Ms would end up choosing
a group of similar models without enough representation of
the full model space, which inhibits finding truly similar
meta-tasks. A model with high performance variance over N
indicates the datasets within the neighbor set exhibit disagree-
ment (i.e. neighbors are not as similar among themselves),
and including the model unlocks the opportunity to find truly
similar meta-tasks. On the other hand, the quality criterion
emphasizes that the added model should be a well-performing
model on the neighbor set, as model selection mainly concerns
“top models”. As such, we aim to identify the neighbor set
based on task similarity regarding the well-performing models,
whereas performance similarity based on underperforming
models does not contribute much to the main goal of (top)
model selection.

Now it is easy to see the trade-off between uncertainty
and quality—the former emphasizes the model’s performance
variation among the neighbor set while the latter expects high
performance over all. This is akin to the explore-exploit trade-
off; uncertainty drives exploration (for better neighbors) while
quality drives exploitation (by promptly pinning a top model).

How can we quantify the uncertainty and quality of a
candidate model (say, Mj)? Naturally, they can be respectively
measured as the variance of the model’s performance, σ2

j =
σ2(Mj |N ), and its average performance, µj = µ(Mj |N ),
given the neighbor set. Thus, the simplest objective criterion
that considers both uncertainty and quality criteria can be
defined as the sum of the two:

argmax
Mj∈M\Ms

σ2(Mj |N ))

Uncertainty

+µ(Mj |N ))

Quality

(6)

Can we define a better objective that automatically balances
the trade-off between the two criteria? At this stage, we can
recognize a connection to Sequential Model-based Bayesian
Optimization (SMBO) [31]. As discussed in §VI, SMBO is a
state-of-the-art paradigm for solving sequential problems like
hyperparameter optimization in supervised settings [32]. As an
iterative method, it relies on what-is-called an acquisition func-
tion a(·) that quantifies the utility of a candidate hyperparame-
ter configuration (HPC) for the next evaluation [31]. In fact, as
with the uncertainty/exploration and quality/exploitation trade-
off, a(·) typically aims to balance between picking an HPC
from the unexplored regions of the hyperparameter space and
one with high estimated accuracy.



To capitalize on this connection, ELECT leverages the
prominent acquisition function in SMBO called Expected
(positive) Improvement (EI) [31] as our objective criterion to
automatically balance the uncertainty-quality trade-off. In our
setting, EI measures the expected improvement of including a
candidate model into the model subset. The high EI value
of a candidate model means that it has large performance
variation and also high performance over the neighbor set N .
Moreover, one of the nice properties of EI is it has a closed-
form expression under the Gaussian assumption, where the EI
of a candidate model is defined as:

EI(Mj |N ) := σj · [uj · Φ(uj) + φ(uj)], where (7)

uj =

{
µj−µ∗

s

σj
if σj > 0 ; and

{
0 if σj = 0 .

In the above, Φ and φ respectively denote the cumulative
distribution and the probability density functions of standard
Normal distribution, µj and σj are the mean and the standard
deviation of model Mj across the neighbor set N , and µ∗

s is
the maximum value of the average model performance of Ms

over N , i.e.,

µ∗
s = max

Mh∈MS

1

|N |
∑

Di∈N
Pi,h .

With the EI-based objective in Eq. (7), we include the
highest EI candidate model to the model subset per iteration:

Ms := Ms ∪ argmax
Mj∈M\Ms

EI(Mj |N ) . (8)

To sum up, ELECT alternates between (i) updating the
neighbor set N using Eq. (5) based on the (expanded) model
subset Ms, and (ii) expanding Ms using Eq. (8) based on the
(updated) N , until converged or termination criteria are met.

3) Convergence and Termination Criteria: ELECT can
operate under two different practical settings: (1) hands-off:
there is no time budget and (2) hands-on: the user has time
constraints and the algorithm is to output a selected model
whenever prompted.

Hands-off : When there is no time budget, ELECT stops
when the neighbor set N stays unchanged in p consecutive
iterations, indicating that the identified similar meta-tasks have
stabilized. We refer to parameter p as “patience”, as a larger p
requires more iterations to converge. In the extreme case (when
p is set to a very large value), the algorithm would stop when
all the models are added to the model subset, i.e. Ms = M.
In this case, ELECT measures task similarity based on all
models, falling back to the original setting (§IV-A) without
the adaptive expansion. p can be decided by cross-validation;
see details in Appx. §B1.

Hands-on: When there is a time budget b (iterations)
to accommodate, ELECT stops the adaptive search when
whichever one of two conditions occurs earlier: time budget
is up, or patience criterion above is met. Note that the time
budget need not be known to ELECT apriori, for it is an
“any-time algorithm”: at any time the user prompts it during
its course, it can always output a selected model as the one
with the highest average performance on the neighbor set at
the current iteration, based on Eq. (2).

C. Computational Complexity

Suppose that a task has r samples and d features on average,
and the score computation of an OD model takes Ctrain(r, d).

Lemma 1 (Meta-training): The computational complexity of
ELECT’s meta-training phase (offline) is O(nmr + nm2).

Lemma 2 (Model selection): The computational complexity
of ELECT’s model selection phase (online) is O[b(bn+mt+
Ctrain(r, d))], for budget b and neighbor count t.
See details in Appx. C. Note that the quadratic m2 term in
offline training is for measuring pairwise performance-driven
task similarity, where m is small (e.g., 297 in this study). In
the online phase, the complexity is linear in both the number
of meta-train datasets (n) and that of candidate models (m).

V. EXPERIMENTS

A. Experiment Setting

Model Set. We configure 8 leading OD algorithms with
various different settings of their associated hyperparameters
to compose the model set M with 297 models (based on
MetaOD [14]; the only diff. is we set n neighbors of ABOD
to [3, 5, 10, 15, 20, 25, 50] for faster experimentation). We eval-
uate ELECT in two testbeds introduced below, with 39 and
30 datasets, respectively. For each testbed, we first generate
the outlier scores of each model in M on each dataset, and
then record the historical performance matrix P. For models
with built-in randomness, e.g., iForest and LODA with random
feature splits, we run 5 random trials and record the average.
All OD models are built using the PyOD library [33] on an
Intel i7-9700 @3.00 GHz, 64GB RAM, 8-core workstation.
Testbeds. The key mechanism of meta-learning is to leverage
the prior knowledge from truly similar tasks—where OD
models perform similarly on both tasks. We create two testbeds
with varying performance-driven task similarities (see Fig. 2).

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Pairwise performance-driven task similarity

controlled

wild

Fig. 2. Pairwise performance-driven task similarity in the wild (med.=0.1035;
lower similarity) and controlled (med.=0.2688; higher similarity) testbed.

(1) Wild testbed contains 39 independent datasets from 2
public OD repository (i.e., ODDS [34] and DAMI [4]) which
simulates real-world use cases.
(2) Controlled testbed contains 30 datasets generated from
10 independent “mothersets” (from the Wild testbed), where 3
types of outliers (global, local, clustered) are injected into each
motherset. As such, higher performance-driven task similari-
ties are expected in the datasets with the same type of injected
outliers (but from different mothersets), while their meta-
feature similarities are low due to the independence of the
mothersets. This testbed helps understand (i) if meta-feature
methods can work when meta-feature similarity disagree with
performance-driven similarity and (ii) to what extent the level
of task similarity affects the performance of ELECT.
Baselines. We include 13 baselines for comparison. As shown
in Table I, they can be categorized by (i) whether it selects



TABLE I
13 BASELINES FOR COMPARISON WITH CATEGORIZATION BY (FIRST ROW)
WHETHER IT IS A MODEL SELECTION METHOD (SECOND ROW) WHETHER

IT USES META-LEARNING AND (THIRD ROW) WHETHER IT RELIES ON
META-FEATURES (LAST ROW).

Category iForest LOF ME MC SELECT HITS GB ISAC AS ALORS MetaOD SS IPM SS

model selection • • • • • • • • • •
meta-learning • • • • • • •
meta-features • • • • •

a model; (ii) whether it is based on meta-learning; and (iii)
whether it relies on meta-features. We use all 13 baselines in
the wild testbed, and the 5 meta-feature-based methods in the
controlled testbed as it is built to contrast performance- vs.
meta-feature-based task similarities.

Briefly, the baselines are organized as: (i) no model selec-
tion: directly/always use the same popular model (1) iForest
[35] or (2) LOF [13], or the ensemble of all models (3)
Mega Ensemble (ME); (ii) direct use of IPMs for model
selection: (4) MC [25], (5) SELECT [25], and (6) HITS
[25]; and (iii) meta-learning based methods: (7) Global Best
(GB) selects the best performing model on meta-train database
on average, (8) ISAC [36], (9) ARGOSMART (AS) [37],
(10) ALORS [38], (11) MetaOD [14] is the SOTA method,
(12) Supervised Surrogates (SS) [39] directly regresses meta-
features to performance P, and (13) IPM-based Supervised
Surrogates (IPM SS) is a variant of SS but uses IPMs other
than meta-features. Baselines (8)-(12) use meta-features.
Evaluation. In both testbeds, we use leave-one-out cross-
validation (LOOCV) to split the meta-train/test. Each time we
use one dataset as the input task, and the remaining datasets as
meta-train. Meanwhile, we use cross-validation to decide the
size of the neighbor set N for each input task, and use a fixed
time budget b = 50 as the convergence criteria. We use the area
under the precision-recall curve (Average Precision or AP)
as the performance measure, while it can be substituted with
any other measures, e.g., the area under the receiver operating
characteristic curve (ROC). Since the raw performance like AP
is not comparable across datasets with varying magnitude, we
report the AP-rank of a selected model, ranging from 1 (the
best) to 297 (the worst)—thus smaller the better. To compare
two methods, we use the paired Wilcoxon signed rank test
across all datasets in the testbed (significance level p < 0.05).

B. Experiment Results

Algo. Rank
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Fig. 3. Comparison of avg. rank (lower is better) of algorithms w.r.t.
performance across datasets in the wild testbed. ELECT outperforms all w/
the lowest avg. rank. Numbers on each line are the avg. AP-rank (lower is
better) of the employed model (selected or otherwise) by each method.

1) Results on Wild Testbed: As shown in Fig. 3, ELECT
outperforms all baseline algorithms with the lowest avg.
rank “in the wild”. Furthermore, Table II (left) shows that
ELECT is the only algorithm that is not significantly different
from the 55-th best model. In other words, ELECT can

TABLE II
PAIRWISE STATISTICAL TESTS BETWEEN ELECT AND BASELINES BY
WILCOXON SIGNED RANK TEST (STATISTICALLY BETTER METHOD AT

p<0.05 IN BOLD, BOTH IN BOLD IF NO DIFFERENCE). IN WILD TESTBED
(LEFT), ELECT IS THE ONLY APPROACH WITH NO DIFFERENCE FROM THE
55-th BEST MODEL. IN CONTROLLED TESTBED (RIGHT), COMPARED WITH
META-FEATURE BASED BASELINES, ELECT IS THE ONLY METHOD WITH

NO DIFFERENCE FROM THE 32-th BEST MODEL, AND STATISTICALLY
BETTER THAN ALL BASELINES.

Ours Baseline p-value

ELECT 55-th Best 0.0541

ELECT iForest 0.0008
ELECT LOF 0.0004
ELECT ME 0.0188
ELECT MC 0.137
ELECT SELECT 0.0484
ELECT HITS 0.2142
ELECT GB 0
ELECT ISAC 0
ELECT AS 0.0147
ELECT ALORS 0.0002
ELECT MetaOD 0.2766
ELECT SS 0.0128
ELECT IPM SS 0.0019

Ours Baseline p-value

ELECT 32-th Best 0.0631

ELECT iForest N/A
ELECT LOF N/A
ELECT ME N/A
ELECT MC N/A
ELECT SELECT N/A
ELECT HITS N/A
ELECT GB N/A
ELECT ISAC 0.0012
ELECT AS 0.003
ELECT ALORS 0.0001
ELECT MetaOD 0.0016
ELECT SS 0.0007
ELECT IPM SS N/A

consistently choose the top 18.5% model from a large pool
of 297 models. Moreover, ELECT is significantly better than
the no model selection baselines, LOF, iForest, ME, and other
meta-learning baselines including GB, ISAC, ALORS, SS, and
IPM SS. For other baselines, p-value remains low although
not significant at 0.05.
ELECT achieves the best performance with small (<1
min.) overhead. Fig. 4 shows the running time of the methods
versus the avg. AP-rank of the employed model. Based on the
avg. selection time per dataset, the methods can be categorized
as i) super-fast methods that take less than 1 sec. (red zone);
ii) fast methods that take less than 1 min. (blue zone); and
iii) slow methods that use up to 10 min.s (green zone). Super-
fast methods either directly employ a model (iForest, LOF)
or simply report the historical best model (GB) with limited
performance, showing the necessity for more effective meta-
learning. In time-critical applications, employing iForest is a
reasonable choice and it is indeed on the Pareto frontier of the
time-performance trade-off. In the fast group, both METAOD
and ELECT are also on the Pareto frontier, showing the
premise of effective meta-learning and the additional benefit of
ELECT. Specifically, ELECT (avg. AP-rank=90) brings 10%
performance improvement over METAOD (avg. AP-rank=99),
while being fast (avg. time=47.10s). For the slow group, in
contrast, the higher runtime for model and IPM building does
not yield improved performance over the fast methods.
IPMs do carry useful signals, and ELECT can leverage
them more effectively. In fact, IPM-based MC, SELECT, and
HITS rank high among all methods (Fig. 3), showing their
potential in model selection. However, using IPMs directly
for model selection incurs a large overhead in building all OD
models and IPMs themselves at selection time, and therefore
all of them fall in the slow group as shown in Fig. 4. Building
on top of IPMs, ELECT shows superior results by “juicing
out” useful information from IPMs via meta-learning, as well
as reducing the runtime via sequential learning to prevent
excessive model building.
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Fig. 4. Avg. running time (log-scale) vs. avg. model AP-rank. Meta-learning
methods depicted w/ solid markers. Based on runtime, methods are categorized
as i) super-fast (in ), ii) fast (in ), and iii) slow (in ). Pareto frontier (red
dashed line) shows the best method under different time budgets. ELECT
outperforms all with small time consumption (on avg. below 1 min. per task).

2) Results on Controlled Testbed:
Setup details. Meta-learning facilitates model selection for
a new task by leveraging the prior knowledge from its truly
similar meta-train tasks—where OD models perform similarly.
The controlled testbed is built to create the scenario where
there exist meta-train tasks with high performance-driven
similarity but low meta-feature similarity, and vice versa. As
meta-feature methods assume a high correlation between meta-
feature similarity and task-performance similarity, they are
likely to do poorly (i.e. select poor models) in this testbed
as the assumption is violated.

To create such a setting, we randomly select 10 independent
“mothersets” from the wild testbed, and inject one of 3 types
of synthetic outliers (global, local, and clustered) by following
[40], resulting in 30 datasets. Intuitively, different OD models
are good at successfully detecting different types of outliers,
irrespective of the underlying motherset. Therefore, we expect
the datasets from different mothersets but with the same
type of injected outliers to have high performance-driven task
similarity yet low meta-feature similarity, while the datasets
from the same mothersets but with different types of injected
outliers to be vice versa.
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Fig. 5. Comparison of avg. rank (lower is better) of algorithms w.r.t. perfor-
mance across datasets in the controlled. ELECT outperforms all baselines.

Results. As shown in Fig. 5, ELECT is superior to all
meta-feature-based baselines. Note that its avg. AP-rank is
55, while the avg. AP-rank of meta-feature baselines are all
above 130. All these differences are significant at p < 0.005
as shown in Table II (right). These results together show
that the performance of meta-feature baselines suffers when
performance-driven similarity is not correlated with meta-
feature similarity. Distinctly, ELECT does not rely on meta-
features and instead directly focuses on performance-driven
similarity, leading to superior selection results.
As a meta-learning method, ELECT achieves better results
with higher task similarity to meta-train. As shown in Fig.
2, the controlled testbed has higher task similarity than the

wild. In Table II (right) ELECT is the only method that shows
no statistical difference from the 32-th best model, suggesting
it can choose the top 11% model from M, an improvement
from the top 18.5% in the wild testbed. The selected models’
avg. AP-rank reflects the same—55 vs. 90 in the controlled
and wild testbed, respectively.

C. Case Study

It is interesting to trace how ELECT works over iterations
on a given dataset, as shown in Table III for the Waveform
dataset from the wild testbed. First we track the changes in
the neighbor set: col. 2 reports the avg. similarity between
Waveform and the identified neighbor set N , and col. 3 shows
the number of ground-truth top 5 most similar meta-train tasks
in N . ELECT gradually identifies both more similar and more
of the top 5 meta-train tasks. From 1-st to the 50-th iteration,
the avg. task similarity improves from 0.2276 to 0.3504., and
the number of identified top 5 neighbors increases from 1 to
4. Note that out of the 38 meta-train tasks, only 7 of them
have higher similarity than 0.3504. By identifying more and
more similar meta-train tasks, ELECT gradually converges
to kNN models as given in col. 4, which is indeed the best
algorithm family for Waveform. Moreover, col. 5 shows that
ELECT successfully identifies better models—the selected
model’s AP-rank decreases from 77 to 38.

TABLE III
TRACE OF ELECT ON WAVEFORM DATASET. OVER ITERATIONS (COL. 1),

ELECT GRADUALLY IDENTIFIES MORE SIMILAR META-TRAIN TASKS
WITH INCREASING AVG. SIMILARITY TO WAVEFORM (COL. 2), MORE

GROUND-TRUTH TOP 5 NEIGHBORS (COL. 3), AND A BETTER SELECTED
MODEL WITH LOWER RANK (COL. 4). BEST PERFORMING ALGORITHM

FAMILY ON WAVEFORM IS KNN, WHICH ELECT SUCCESSFULLY
IDENTIFIES DURING ITS ADAPTIVE SEARCH.

Iter. Avg.
Sim.

# Matched
neighbors The selected model The selected

model rank

1 0.2776 1 (’LOF’, (’manhattan’, 5)) 77
2 0.2876 1 (’COF’, 10) 70
. . . . . . . . . . . . . . .
11 0.3304 2 (’LOF’, (’manhattan’, 10)) 76
12 0.3493 3 (’LOF’, (’euclidean’, 20)) 71.5
. . . . . . . . . . . . . . .
21 0.4351 4 (’kNN’, (’mean’, 5)) 50
22 0.4351 4 (’kNN’, (’mean’, 5)) 50
. . . . . . . . . . . . . . .
31 0.2960 4 (’kNN’, (’mean’, 15)) 38
32 0.4351 4 (’kNN’, (’mean’, 5)) 50
. . . . . . . . . . . . . . .
49 0.3504 4 (’kNN’, (’mean’, 15)) 38
50 0.3504 4 (’kNN’, (’mean’, 15)) 38

D. Ablation Studies and Other Analysis

1) Model initialization: ELECT uses proposed coverage-
driven initialization of the model subset Ms (see Appx. §B2).
Fig. 6 shows that its AP-rank (median=87.5) is notably lower
than that of random initialization (median=133). The differ-
ence, by one-sided Wilcoxon signed rank test, is statistically
significant at p = 0.0204.

050100150200250
Test AP Rank

cov. init.

random init.

Fig. 6. Ablation of coverage init. (med.=87.5) vs. random init. (med.=133).



2) The Effect of Model Inclusion Criteria: Fig. 7 shows
the performance comparison between using EI (balancing
both exploitation and exploration) in Eq. (7) and the greedy
objective (exploitation only) that adds the model with the high-
est performance on N during adaptive search (see §IV-B2).
One-sided Wilcoxon signed rank test shows that the former
(median=87.5) is statistically better (at p = 0.0203) than the
latter (median=105), justifying the use of EI.

050100150200250300
Test AP Rank

EI

greedy

Fig. 7. Ablation of using EI (med.=87.5) vs. greedy without exploration
(med.=105) during the adaptive search.

VI. RELATED WORK

Model Selection for Outlier Detection. There is no short-
age of unsupervised OD algorithms in the literature, while
most are sensitive to their hyperparameter (HP) choices [4].
Stunningly, outlier model selection (OMS) is understudied [5].

We can categorize the (short list of) approaches to OMS
into two. The first group focuses on using internal eval-
uation/performance measures based solely on model output
and/or input data [23], [24]. As a recent study showed [25],
those are noisy performance indicators that are only slightly
better than random selection. The second category consists
of learning-based approaches. A subset of these are semi-
supervised [19], [20], which use clean/inlier-only data for
training, and a small validation set with labels for model
selection—inapplicable to the U(nsupervised)OMS problem.
The only existing work on UOMS is the meta-learning based
METAOD [14]. Distinctly, we eliminate the hand-crafted
meta-features and instead employ performance-driven simi-
larity between tasks. Consequently, our ELECT outperforms
METAOD [14] on two separate testbeds.
Hyperparameter Opt. (HPO) and Meta-Learning. HPO
has gained significant attention within AutoML owing to the
advent of complex models with large HP spaces that are
costly to train and thereby to tune [21]. Besides model-free
techniques such as grid or random search [15], Bayesian
optimization and the adaptation of Sequential Model-Based
Optimization (SMBO) [31] is one of the main lines of work
in HPO. The idea is to iterate between (i) fitting a surrogate
performance function onto past HP evaluations, and (ii) using
it to choose the next HP based on an acquisition function.
Well-established SMBO approaches include SMAC [16] and
Auto-WEKA [17]. We remark that SMBO cannot directly be
used for UOMS, as we cannot evaluate model performance
reliably to train an effective surrogate. Instead, ELECT em-
ploys meta-learning to estimate the mean and variance of a
candidate model’s performance (to be used for acquisition)
based on similar historical tasks.

Meta-learning has been used for HPO in various forms [41];
e.g. to warm-start SMBO [42], prune the HP search space
[43], and transfer surrogate models [44]. Active testing [45]
has used meta-learning for model selection, which differs from

our work in two key aspects. First, their acquisition is fully
exploitative and does not factor in variance. More importantly,
it is supervised: computes task similarity based on model
performance evaluated on ground-truth.

VII. CONCLUSION

In the face of numerous outlier detection algorithms with
various hyperparameters, there exists a shortage of principled
approaches to unsupervised outlier model selection—a vastly
understudied subject. Toward filling this gap in the literature,
we proposed ELECT, a meta-learning approach that selects
a candidate model for a new task based on its performance-
based similarity to historical (meta-train) tasks. ELECT adap-
tively identifies these neighbor tasks, as such, it can flexibly
output a selected model in an any-time fashion, accommodat-
ing varying time budgets. Through extensive experiments, we
showed that ELECT significantly outperforms a wide range
of prior as well as more recent baselines. Future work includes
extending to UOMS for deep learning based outlier models.
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APPENDIX

A. (Offline) Meta-training Details for §III

1) Building Internal Performance Measures (IPMs): As
described in §III-B and III-C, IPMs are used as the input
features of the performance predictor f(·). In ELECT, we use
three consensus-based IPMs (i.e., MC, SELECT, and HITS)
as they are reported to carry useful signals in model selection

[25]. Namely, consensus-based IPMs consider the resemblance
to the overall consensus of outlier scores as a sign of a better
model; their computation requires a group of models.

In [25], Ma et al. use all models in M for building IPMs,
leading to high cost in generating outlier scores and then IPMs.
To reduce the cost, we identify a small subset of representative
models MA ∈ M called the anchor set (i.e., |MA| ≪ |M|),
for calculating IPMs. That is, we generate the IPMs of a model
with regard to its consensus to MA rather than M. Similar to
forward feature selection [46], the anchor set can be identified
in a forward fashion (i.e., iteratively expanding the set) and
cross-validation on the meta-train database.

2) Pairwise Performance Predictor: As shown in §III-C,
the predictor f(·) maps the vector of IPMs of a pair of
models to their performance difference. To that end, we
train a LightGBM regressor [30] by enumerating all

(
m
2

)
model pairs for each task in meta-train database, where the
hyperparameters are set by cross-validation.

B. (Online) Model Selection Details for §IV
1) Hyperparameters: The hyperparameters are chosen by

LOOCV on the meta-train set. To that end, we find the
following settings works well in both testbeds: (i) the size of
the neighbor set, |N | = t, equals to 5 (§IV-A) (ii) the initial
size of the model subset, |Ms|, equals to 7 (§IV-B1) and (iii)
patience p equals to 17 (§IV-B3).

2) Model Subset Initialization: Other than random sam-
pling, we design a coverage-driven strategy for initializing Ms

in §IV-B1. Intuitively, we expect Ms provides differentiability
among datasets—the models’ performance in Ms on different
datasets should vary. To this end, the coverage-driven strategy
iteratively builds the initial Ms by including the model that
performs best (a top model) or worst (a bottom model) on the
most meta-train tasks that have not been “covered”. A task is
said “covered” if both its top and bottom models (at least one)
are already included in the model subset.

C. Detailed Complexity Analysis
Suppose each task has r samples and d features on average,

and the score computation of an OD model takes Ctrain(r, d).
Meta-training involves (i) IPM generation (§III-B) for n
meta-train tasks on all m models; MC, SELECT, and HITS
have O(nr), O(nmr), O(nmr), respectively; (ii) training of
pairwise performance predictor (i.e., lightGBM, §III-C) uses
the input data composed by n tasks, each with

(
m
2

)
model

pairs by enumeration, leading to O(nm2) complexity; and
(iii) building the anchor set with forward selection (§A1) takes
O(nmr). Overall runtime is O(nmr + nm2).
Model selection first initializes the model subset Ms with the
coverage-driven strategy (§IV-B1), yielding O(nm). For each
initial model in Ms, outlier score and IPM generation take
O(Ctrain(r, d) + r). In each of b iterations of adaptive search
(§IV-B2), ELECT (i) predicts the model performance with
O(bn) complexity (ii) identifies the next model to be included
in Ms with EI, taking O(mt) and (iii) gets the next model’s
outlier scores and IPMs with O(Ctrain(r, d) + r) runtime. The
total selection runtime is O[b(bn+mt+ Ctrain(r,d))].
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